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This paper reports the temperature dependence of the relaxatiof {i(B.2 and 90 MHz) and the second
moment of the NMR line for protons in a polycrystalline sample of JK&Hs),]3sShCls (DMACA). The
fundamental aspects of molecular dynamics from quantum tunneling at low temperatures to thermally activated
reorientation at elevated temperatures have been studied. The experimentally observiadtsgimelaxation

rate is a consequence of dipolar interactions between the spin pairs inside the methyl graeedhtribution)

as well as the spins belonging to neighboring methyl groups and pairs, methyloggger methyl spin (4

T,ee contribution). These contributions are considered separately. Two methyl groups in the dimethylammonium
(DMA) cations are dynamically inequivalent. The values of the tunnel splitting of separate methyl groups are
obtained from thel; (55.2 MHz) experiment. The tunneling dynamics taking place below the characteristic
temperatures 74 and 42 K for separate methyl groups are discussed in terms of ftrdin§ehrequation.

These temperatures point to the one at which thermal er@Gynd potential barrier take the same value.

It is established that the second moment of the proton NMR line below 74 K up to liquid helium temperature
is much lower than the rigid lattice value, which is due to a tunneling stochastic process of the methyl groups.

1. Introduction The first to investigate the mechanism of €Hjroup

The methy| group is the ideal System for Studying the reorientation in solids by NMR were GUtOWSky and Péke,
fundamental aspects of molecular motion in solids because it Andrew? and Powles and GutowsRy.Later?®the mechanism
undergoes rotational tunneling as well as thermally activated of the CH; group rotational tunneling was considered in some
reorientation. The experimentally obtained temperature depend-detail. For a number of methyl-bearing solids the relaxation time
encies of the spinlattice relaxation timeT;, and the second T, at the minimum, observed even at high temperatures, is longer
moment of the NMR lineM,, for methyl bearing solids are  than that predicted on the basis of the known theories relating
considerably different from those recorded for other solids. ¢ T, relaxation with the classicaCs rotation of the methyl
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Figure 1. The structure of the (ChHLNH," (DMA) cation. The
distancesRs(intra) and exemplanRs(inter) are marked with dotted
and dashed lines, respectively.

The alternative theory explaining the lomgat the minimum
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Figure 2. Schematic representation of motion in a periodic triple
potential well. The symbols (%) and (1t) are the rate constants of
classical jumps across the barrier and tunneling jumps through the
barrier. The two lowest torsional energy levels vO and v1, distanced
by Eos, exhibit a tunnel splittindywr into the levels with the symmetry

A andE.

has been proposed in ref 14. The theory demonstrates that thérequenciess; and 2. Such an approach to the spilattice

torsional oscillations of methyl groups, occurring at frequencies
too high to influence spin relaxation rates directly, partially
average the Hamiltonian for the magnetic dipetépole

interactions between the nuclei. The efficiency of nuclear

relaxation of the methyl bearing solid has been proposed by
Haupt!®

The methyl group undergoes hindered rotation in a triple
potential well (Figure 2). This motion is complex, consisting

relaxation resulting from hindered rotation is thus reduced. The 0f hopping over the barrier (hopping across the barrier, classical

two maximums of relaxation rates both being inversely pro-
portional to the Larmor frequency have been explained for the

methyl group attached to a benzene ring in the stochastic mode

proposed in refs 15 and 16.

In terms of the relaxation theory assuming the classical motion
only it is impossible to correlate the second moméfy) fesults
with the results of the relaxation timE measurements. The

motion, classicalC; rotation) and hopping through the barrier
(incoherent tunneling, quantum mechanical tunneling). Because

jof these compound motions the orientation and the values of

Rs(intra) andRis(inter) vectors are random functions of time.
The theory of classicdCs rotation of the methyl group, which

is a dominant mechanism of relaxation at high temperatures, is
well-known23 This paper reports the occurrence of the tunneling
jumps of the methyl protons in the (G}ANH,™ (DMA) cation

temperature dependence of the second moment may not showys the dominant mechanism of spiittice relaxation in the

any changes even When_considering the range from the liquid low-temperature regime. Moreover, in this paper it is shown
helium temperature, and its value can be a few times lower thanthat although the tunnel splittingr takes place also at high

that calculated for the rigid structure. Andrew et4lound that

temperatures, the spectral densities related to the tunneling jumps

even at liquid helium temperatures the second moment of theare zero at high temperatures. The presence of the tunneling

NMR line of trimethylbenzene did not reach the value predicted
for the rigid molecule. Eades et ®#1° reported that NMR

process is predicted by the S¢timger equation for the energies
of particles lower than the potential barrier. The tunneling jumps

spectra of a number of compounds containing methyl groups of proton through the barrier should cease above the temperature

measured at liquid helium temperatures are often narrow,

indicating rotational motion of the methyl groups. Alf€gave
the first simple model to explain the reduced value of the proton
second moment of the NMR lineM;) in methyl-bearing

at which the thermal energy of the molecule is higher than the
potential barrier for the hindered rotation of the methyl group.
The damping of the correlation function related to the incoherent
tunneling at high temperatures has been established for the

compounds at low temperatures. The spectral densities ofproton transfer in the hydrogen bofftf>

complex motion derived in the ref 21 have been used in this
work to explain the second moment of the proton NMR line
much being lower than the rigid lattice value in the material
studied.

The spin level system of methyl protons significantly different
from that predicted for two uncoupled spi#fdn the system of
three spins belonging to the methyl group, the transitions

between the levels corresponding to the resonance frequencie

w, and 2v, are forbiddert3 As the theory of relaxation has been

The conclusions drawn on the basis of the spectral densities
of particular motions calculated in refs 226 contradict the
generally assumed scheme implying that the classical motion
takes place only at high temperatufe$he probability of
classical jumps is higher than zero in the whole temperature
regime up to 0 K, while that of tunneling jumps is higher than
zero only at low temperatures.

DMACA in the paraelectric phase crystallizes in a monoclinic
§ymmetry, space group2;/c (a = 14.074(2) Ab = 9.048(2)

A, ¢ =9.692(3) A, = 95.56(2), Z = 2). The crystals are

propounded for a two-spin system, the occurrence of the tunnely it of two-dimensional layers of corner sharing halogen

splitting of the methyl group demands differentiation of two

octahedr&’” The dimethylammonium (DMA) cations situated

relaxation channels. The relaxation in the system of spin pairs j cavities between the octahedra possesse substantial freedom

Rs(intra) (dotted lines in Figure 1) belonging to the methyl
group, the so-called (I{sg) relaxation, is driven by the

for reorientations. The ionic salts containing the DMA cations
are known to undergo structural phase transitions. The phase

transitions between the nuclear spin levels corresponding to thetransition at 242 K leads to the ferroelectric phase with a polar

frequencies ¢t + w)), (wt + 2w)) and the relaxation in the

symmetrym (space groupPc).2’ From the dielectric studies of

systems of the other spin pairs in the molecule distanced by DMACA it appears that the ferroelectric phase transition is of

Rs(inter) (dashed lines in Figure 1), the so-calledT{&é)
relaxation, is driven by the transitions corresponding to the

the order-disorder type. The mechanism of this phase transition
is associated with changes in the dynamics of the DMA
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cations?8-33 The high-temperature dynamics of the alkylam-

monium cation has been studied, both below and above the

transition by NMR spectroscopyf- 26 This paper presents proton
NMR studies of DMA cation dynamics below the liquid nitrogen
temperature.

2. Theory

Proton Spin—Lattice Relaxation. The theory of magnetic
nuclear relaxation for methyl bearing solids must distinguish

between the spin pairs belonging to the same methyl group,

Rs(intra), and spin pairs made of one spin belonging to the
methyl group considered while the other is outside it (it can
belong to another molecular group3s(inter) (Figure 1). This
distinction is necessary because the splittingpf the torsional
ground state of the methyl group is usually superimposed on
the three spin level splitting, in a magnetic field (Figure 2),
while the theory of relaxation concerns two-spin systems. For
the spin pair at the distané®(inter), the spir-lattice relaxation
can be realized through transitions forced by a fluctuating local
field of the frequenciesy; and 2w, which are forbidden for
the spin pairs at the distan&g(intra). For the latter spin pairs
the allowed transitions arev{ + w)) and @t £+ 2w). Hence,

the total relaxation rate of the eight protons in the DMA cation
with two methyl groups (1) and (1), denoted as in Figure 1, is
a sum of two relaxation rates:

1) _ (1) (L1
(Tl)vx B (TlAE)vx - (TlEE)vx (1)
where
1 1223 1 18 8 1
e o B . @)
(TlAE)vx 8 IZ FZ(T|fAE(I) VX 8 ; ge(TI;I?AE(”))\/X
1 18 3( 1 15 8 1
] T8 B . 3)
) o2 2] o2 2.

The indices (1) and (Il) mean that the motion parameters refer
to the methyl group (I) or (I1). The symbol (Lf,;) refers to
the spin-lattice relaxation of two nuclear spins at the distance
Rs(intra), while (1/T;:p) refers to the relaxation in the system
of two spins at the distand@s(inter). The indices %, wherex
=0, 1,2, ..., were introduced to take into account the fact that
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Tty = Tog) EXPER/RT) (5)

where Egy is the molar potential barrier height amd= I, II
labels the methyl group, and (2) the correlation time of tunnel
jumps expressed by the equation which follows from the
Schralinger equatior?

T4 = Tog) €XPBY(EQ) — ] (6)
where
_2 [om
B=% Nay (7)

The value ofB in eq 7 depends on the massi™ of the
tunneling particle and on the width of the potential barrigr .
CoT, whereC, is the molar specific heal, is the temperature
in the Kelvin scale, is the thermal energy aE@‘; is the
potential energy barrier of the Avogadro number of particles.

Therefore, as the BPP theory predicfed
1

is
T|1EE

= 3k + F(20)] ®)

and according to the Haupt thedty

1 9
I 1_6[‘]|ls(wT +w)+ ‘]ils(wT —w)+ ‘]izs(a)T +2w) +
TlAE
Jor = 20)] (9)
where the spectral densities
Iw) = [ FNOFT (t+ Cexp(—iwr) dr (10)
are Fourier transforms of the autocorrelation functions of the

random functions of the dipolar perturbation Hamiltonian. These
random functions are

Fiat) = dg(t) sindig(t) cosdg(t) explipi(t)

Fa(t) = d(t) sirv,(t) exp(2e(t)

(11)
(12)

Since spins (i) and (s) belong to the molecule undergoing
stochastic motions, the coordinatd®s vis, ¢is) are random
functions of timeR; is the distance between spins (i) and (s).
vis and gjs are the polar and azimuth angles, respectively,

the molecules can be distributed on the torsion levels accordingdescribing the orientation of the internuclear vector in the

to the Boltzmann distribution. The problem is discussed in detail
in the papet® showing that for proton relaxation it is enough to
consider the two ground and first excited torsional levels.
Therefore, the total relaxation rate is

Tl vo Tl vO v Tl vl

wheren,o andny; are the fractions of molecules on thg ¥
v0 and w = vO0 levels.

Particular contributions to the total relaxation rateTglare
functions of spectral densities depending on the model of
motion. According to the model presented in ref 26, the spectral
densities depend on the two different correlation times: (1) the
correlation time of jumps over the barrier (classical motion),
which fulfils the Arrhenius dependence,

(4)

laboratory frame with the axis in the direction of the external
magnetic fieldBo. d(t) = yi yshRs3(t) is the dipolar coupling
constant. As in the polycrystalline material particular spin pairs
can assume arbitrary angles and ¢is, the calculations of
JY(w) were performed for the mean values [gincosvis exp-
(ipis)]? = 2/15 (S = 2/15) and [sifvis exp(d¢is)]? = 8/15 &

= 8/15). Therefore, after spatial averaging the total spectral
density of complex motion consisting of the classical motion
and incoherent tunneling has been derived in ref 26:

tu
Hlo) = STeEA S0
1+ (w7p)
ovtu
. T(r)
—— + (C)————
21+ (07 2 1+ (wrz’r‘f”)z

ov
isis 2-[(’)
1

(13)
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gn = 2/15, 8/15 form =1, 2 and

CF = gl ()? + di(B)* + dE(CF +
dS(A)d(B)(3 coO; — 1) +
dS(A)dS(C)(3 cogOs. — 1) +
dS(B)ds(C)(3 codO. — 1)] (14)

C5 = S[2d(A)? + 2d5(B)? + 24¥(CY -
dS(A)dS(B)(3 codOR; — 1) —
dS(A)dE(C)(3 co$OR: — 1) —
dS(B)dS(C)(3 codOf. — 1)] (15)

t _1,1 (16)

ovtu  _ov tu

T Tn Tn

wheredS(A) = yiydiRs3(A), dS(B) = yiydiRs3(B), dS(C) =
yiydiRs3(C) are the particular dipolar coupling constant values.
Ris(A), R.S(B), andRs(C) are the distances between the spins
“i” and “s” at three equilibrium positions in a triple potential
minimum during the hindered rotatio@s; of a given methyl
group. If the spins “i” and “s” belong to the same methyl groups,
the distance between them does not chang&s6a) = R(B)
= R(C), but if they belong to different methyl groups, or spin
“i” belongs to the rotating methyl group and spin “s” to another
chemically mequw_alent_group theRs(A) = Ris(B) = Rs(C).
The angle®y;, Ox., O5 are those made bRs(A), Rs(B),
Rs(C) (Figure 1).

The condition ifC,T > Ey then

am _ is ZT?V\;
() = S“C —
( (r))

confirms, following from the Schdinger equation, the cessation
of the tunneling motion z(;t‘) — oo) at the characteristic
temperatureTy, at which CyTun = Eg). The spectral densities
are governed by the classical motlon only at temperatiires
Twn. Below temperatureTy, the probability of tunneling
stochastic process becomes higher than zero (eq 6).

17)

The classical motion also can be complex (for example,

consisting of hindered rotation in triple potential and isotropic
rotation). Then the next; minima at higher temperatures are
expected?40

Second Moment of the Proton NMR Line. The basic
equation for the dipolar second momeMt, of a dipolar NMR
line was derived by Van Vledk for two identical nuclei in the
presence of a motion for which < 1/(y4/ M529), whereM§2®
is the rigid lattice second moment in magnetic field units,

Mt = = ‘2|(| + DIF(1)]°0 (18)
where

Fia(t) = O[3 cogv(t) — 1] (19)
is a random function in the dipolar perturbation Hamiltonian.

WhenN is the number of interacting nuclei th&)"" is
given by the averaged sum of thedipolar interactions:

Latanowicz et al.

Mmietion = *2|(| + )N~ Z Z[ﬂFlos(t)]ZD (20)

The maximum reduction in the second moment occurs at
temperatures at which all the molecules reorient fast enough to
reduce the line broadening. As proposed by Powles and
Gutowsky? the stochastic nature of the motion permits the

application of the correlation function method. If the correlation

function of a given reorientation is known, the appropriate

averages for the partial averaging E@IF?S(t)]ZDare of the form

MFAM120= ) ) dv (21)

wheredw is the line widthw = 27v = y,/M,, andJ2(w) is the
spectral density of the correlation function of the random
function F (D).

Therefore as proposed by Powles and Gutowsky the equation
for M, extended over the whole temperature regime is of the
form

= _ZI(I—l—l)N ZZ[ R dv (22

The fractions,g andn,; molecules distributed in two vibrational
levels contribute to the second moment of the NMR line.
Therefore, the total value of the second moment equals

MZ = nvO(MZ)z/O + nvl(MZ)vl (23)

wheren,g andn,; are the fractions of molecules at the ground
and excited rotational levels. As we are going to consider the
second moment reductions taking place at temperatures below
the liquid nitrogen one, in eq 23 the contributionrgi(My)y1

can be neglected becausg ~ 1 in this range. ThusM, ~
(MZ)VO-

Calculations of proton spinlattice relaxation time as well
as the proton second moment of the NMR line require the
knowledge of the spectral densities of the expected motion of
the spin system.

The three proton NMR lines at the frequenaigs(w, + wr),
and @, — wT) are observed at liquid helium temperatures for
methyl bearing compoundsThe lines | + wr) are distanced
from the central linaw; and usually are beyond the range of
the central line measurement. The temperature dependencies of
the second moment have to be considered separately for each
line. Assuming that the dipolar interactions are additive, the
total second moment of the line should include a sum of dipolar
interactions over all spin pairs at the distanBgénter) as well
asRg(intra).

The total value of the second moment should include the
dipole—dipole interactions of all spin pairs in the molecule. The
contribution from two spins belonging to the MNHemains
constant because no motion modulates the dipolar interaction
of the protons within the Nkigroup. The other dipotedipole
interactions in the molecule are modulated by the motion of
two methyl groups. Therefore, the total value of the second
moment equals

[Z ZMz(l) + ; ZMz(n) + ; ZMZ(I)
; ZMz(u)] (24)
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where a T T T T

) 9 . -~ ! o 2 B -
Mz = 50,25 TG + CICaT an Gy Mz +

is 22

sis2 . 1 . 1 -
Cllsclzsgtan (Wﬁf) Ml'j(r))"'(cz ;tan (Vif?r\;tu Mlzs(r))]

(25)

T, (s)

tuv __owvtu

whereCr, C; are given in egs 14 and 15, anf], 7y, 7y are
given in egs 5, 6, and 16.

The reductions of the second moment should be observed : : : :
when the rates of particular motions tﬁj) (1/r?,‘;) become 0 50 100 150 200 250
comparable to the values of line widths on the frequency scale. b 1000/ (K") v
The tunneling jumps in separate methyl groups reddgeT his ‘ T4
should happen at the temperatures at which the reorientation S

frequency meets the condition (4Y) ~ y Mf(r). Such a
temperature regime is near 0 K. With temperature increasing,

when the tunneling motion ceases the line should undergo
broadening followed by narrowing at higher temperatures due )
to increasing classical motion. The two reductions which are =
due to classical dynamics of separate methyl groups are expected

for proton M, of DMACA. The reductions should take place

when (1ty) ~ yy/M3,. The classical motion oRs can be
complex (for example, the classical hindered rotation in a triple i i
potential and isotropic rotation). Then the next reductions of 0 4 8 12

M, are expected at higher temperatures. The corresponding 1000/T (K™)

equations for the temperature dependences of spectral densityjgyre 3. Temperature dependencies of the protefiffie (55.2 MHz,

of complex motion derived in refs 39, 40, 42, and 43 may be circles; 90 MHz, squares) and best fit curves (solid lines) for powdered

applied to such a case. samples of DMACA. The dotted lines in part b show the theoretical
plots of Tieg(52.2 MHz) andT:e£90 MHz) obtained from eq 3 and
3. Experimental Section the motion parameters given in Table 2. Arrows show the temperatures

. Tune) = Ey/Cp (74K and 42 K).

[(CH3)2NH]3Sh,Cl (DMACA) were precipitated from the
stoichiometric aqueous solution of £k and [NH(CHz)]ClI point. The value off; due to classical motion depends on the
at a high excess of HCI and purified by slow recrystallization. resonance frequenay, according to the known relation:

The pulverized single crystals of DMACA were degassed under
a pressure of I¢ Torr and sealed under vacuum in glass
ampules.

The proton spir-lattice relaxation T;) measurements at a
Larmor frequency 55.2 and 90 MHz and second moment whereC is the relaxation constant depending on the model of
experiments were carried out with a SXP 4/100 Bruker pulsed motion.

NMR spectrometer. Protofy relaxation times were measured Assuming that the methyl groups perform the correla@ed
employing the (180-7—90°) pulse (IR) sequence for times reorientation about the symmetry axis, the relaxation constant
shorter tha 1 s and by the conventional saturation-recovery C become#

(SR) sequence [(96-71—90%),—7—90°] wheren = 15. Delay

71 was typically 4 ms. For all data reported, the magnetization Cc= ﬂgyz;thge 27)
was found to recover exponentially. The second moment of the N 20 H

IH NMR line was calculated from a solid echo signal. Solid ) )

echo sequené&(90,°—7—90,%) (with 7 = 17 us) avoids signal wheren_= 6 is the number of protons in the methyl groups and
loss during the dead tinf€:46 The normalized line shape of the N = 8 is the number of all protons in the molecuRs, =
solid echo spectrum is identical with that of the FID spectrum. 1.78 A is the protor-proton distance in the methyl group.
Therefore the second moment can be determined on the basiéccording to eq 27 we ge€ = 60.4 x 10° s~ and T;™"(90

of analysis of the solid echo shaffeThe temperature of the =~ MHZ) = 66 ms and;™"(55.2 MHz)= 40 ms. The experimental
sample was automatically controlled by means of a gas-flow T1 times at the minima are about twice longer.

CF1200 Oxford cryostat with an accuracy of ab@K during The character of the wide range temperature dependence of
each measurement. T1 (Figure 3a) indicates that it cannot be interpreted in terms of

the classical theory of molecular motion only. It seems that the
only reasonable explanation of this courseTg(T) is based on

T min __ i
1

T 1.42%C (26)

4. Results and Discussion the assumption of the complex motion of separate methyl
Proton Spin—Lattice Relaxation Time. The spin-lattice groups. The complex motion consists of jumps over the barrier
relaxation times for the protons of [(GJANH2]3SkhCls (DMACA) characterized by correlation timq",”) and tunneling jumps

were measured at the frequency 55.2 MHz from the liquid characterized by the correlation tim%‘). The geometries of
helium temperature to the melting point, and at the frequency both compound motions are the same but the frequencies are
90 MHz from the liquid nitrogen temperature up to the melting different.
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The high-temperaturd; minimum is asymmetric, which ~ TABLE 1: The Proton —Proton Distances (in A) for the
suggests the presence of two minima close on the temperaturd®MA Cation (Figure 1)
scale. The slope of R (1000T) dependence (Figure 3b) from  Ryuum=2.19 Ragrw=2.19 Ruwme=4.08 Rugpe= 3.68
the high-temperature side corresponds to the activation energy Ruw@iz)= 2.82 sHE) = 2.23  Ruwnm=3.75  Ruenmn= 2.60

)= ( H(
)= Riy H(
of 9.6 kJ/mol, while from the low-temperature side to 5.4 kJ/  Ri@ne =223 Rigne=2.82 Riane=3.74 Rugne=3.15
mol. The activation energies of this order characterize the S“H(“)H“i):%'ig E’*H(5>H(6):§'gg &(Z)H@: g'(lig S“H(“)”(S): i'%
i ; ; @HM= 2. EHN = 2. @HM = 3 wHe= 1.
classical motion. These values can be interpreted as correspondRH(4)H(8): 2.95 Rugme=240 Rugue=2.60 Rugrn=1.78

ing to different potential barriers of the jumps over the barrier
of two types of methyl groups. These dynamically inequivalent ranges. The values oﬁ}’r), Eg‘; andw1(r) were obtained from

methyl groups can belong to one DMA cation or to two different the asymmetric high-temperature minimum, arm) and L
cations belonging to two different molecules in the crystal cell. \vere obtained from the low-temperature regime. The values of
The distinction between both cases is rather impossible by the(;p and Ty, were estimated from the intermediate temperature
NMR relaxation method. regime (20 K < 1000 < 60 K=1).

The significantly different potential barriers for the hindered In conclusion, the course afi(T) for DMACA reveals the
rotation of separate methyl groups suggest that the respectivepresence of two dynamically inequivalent methyl groups with
tunnel splittingwr are different. This is also confirmed by fact  two different tunnel splittings. One of the tunnel splittings is
that two minima close on the temperature scale do not take thesmall and cannot be precisely determined fibnexperiment®
same values. The analysis presented is performed assaging The other onewrt is high enough (2 x 600 MHz) to be
= 1 andny; = 0, which is correct for low temperatures and manifested as a significant increase in the corresponding value
holds also for high temperatures, because the only differenceof T, minimum. The dominant mechanism of relaxation at the

between eq 4 and the following equation lowest temperatures is the tunneling because at this temperature
1 1 range the spectral density of this type of motion takes the highest
? = (?) (28) value.
1 1/vo Figure 4 presents the temperature dependence of the correla-

tion times characterizing particular types of stochastic motion
performed by the two methyl groups of the DMA cation denoted
as (l) and (). These motions are the classical hindered rotations
(the linestfy, 7{y), tunneling jumps (the linesg), 7). The

is the neglect of the fact that the value of the potential barrier
is (Ejy — Eo1) (Figure 2) for the fractiom,; of the molecules.
Thus, the potential barrier of the classical motion obtained from

eq 28 is the average value of the potential barrier for moleculesl_ d ing the best-fi { in Tabl
distributed between the vO and V1 levels. ines were drawn using the best-fit parameters given in Table

In the range of intermediate temperatures, the increaSe in 2, and egs 5 and 6. The points are the experimental correlation

at a rate of 5.4 kJ/mol breaks and th&{(1000m) dependence times. . . . .
passes through two weakly marked minima of almost the same Usually _Ilterature reports one un_|form correlation time
height, but theT; at these minima are a few times longer than characterizing all stochastic processes in the molediit&' Such

at the high-temperature minimum. The intermediate temperaturea un|form corr.elat|on time does not follow the Arrhenius
range covers 20 K& < 1000 < 60 K- In the lowest equation and diverts from it at the low-temperature range. The

d dependencies presented in Figure 4 differ from the temperature

and linear down to liquid helium temperature (Figure 3a). The course of one un?form correlation time (Arrhenius .diagram)
known from the literature. We do not accept the idea of a

character of the intermediate and low temperalyrdependence : S .
uniform correlation time. The temperature dependencies of the

follows from the characteristic temperature dependenag,of . . . . )
P P o) o, o) times fulfill the Arrhenius equation in the whole

The values ofr}‘r'), which are almost constant at low tempera- fg)m Tglr)ature regime studied. The temperature dependencies of
tures, decrease significantly at the temperature regime below P 9 : P P

tu
the Twne) temperature at which the tunneling motion ceases.

temperatures the M(1000T) dependence becomes flattene

the tg’) Tay can be plotted up to a certain characteristic

j— oV B
The results of the fit of eq 1 and eq 13 to the experimental teMperatur&liun, whereCyTun = E(y only. Above this temper-
relaxation timesT1(55.2 MHz) andT:(90 MHz) are presented  ature the correlation functions of incoherent cannot be defined.
in Figure 3 by solid lines. The analysis of the temperature Before the molecules reach the thermal ene@fun the
dependence off; at high temperature range is additionally ~correlation times,, 7, should undergo significant shorten-
illustrated in Figure 3b showing, apart from the best-fitted curve, N9

also the contribution ofe to theT; relaxation time. The values Proton NMR Line Narrowing. The temperature dependence
of Rs(A), Rs(B), Rs(C) 0”8 ®EC and ®C were not fitted of the second moment of the proton NMR line for DMACA is
but were taken from the available structural d®taThe  Shown in Figure 5. Even at the lowest temperatures the second

relaxation rate (Teg) depends on the fluctuations of the dipolar Mmoment does not reach the value deter.m.ined fpr the rigid lattice.
interactions of the spin pairs at the distanBaginter) (Figure Usually, the second moment for the rigid lattice is calculated
1). Because in the formulas for {kg), the value oRs occurs by assuming the Van Vleck theoty,so by summing up the

in the sixth power, the ensuing considerable changes in thecontributions from all dipolar interactions in the molecule,
distance cannot be neglected in analysis of the relaxation rate 2ccording to the formula
According to Table 1, alRs(inter) distances are from the range

n n
2.2t0 2.9 A. The values listed in Table 1 are calculated from M9 = 3 _2h21- Rfe (29)
the structural dat& The distances are much greater than 2 20)4 n; ; °
within the methyl groupRs(intra) = 1.78 A. The (1Tiep)
contribution to the relaxation is much smaller thanT(L£). wheren is the number of all protons in the unit cell of the
Thus it can be concluded that the courseldfT) in the whole crystal.
temperature range is related toTidg). For the rigid structure of [(Ck2NH2]3Sh,Clg (DMACA) it

The best-fit parameters are given in Table 2. The values of is 31.9 G. It is very interesting to note a very small difference
the parameters influence tfe value in different temperature  between the rigid lattice second moment calculated for the
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TABLE 2: The Motion Parameters Obtained for Methyl Groups in the DMA Cation from the T; Measurements

no. of methyl group Togy S Togy S EQy kImol  Tun, K Cp, J (K/mol)2 L, nm 11y, MHzZ
r=1 (4+05)x 108  (6+05)x10° 96+0.8  41+5 130+ 10 0.13+0.01  (0+ 27(20))
r=1 (4+05)x 103 (6+05)x 100 54+08  73+5 130+ 10 0.13+ 0.01  27(600+ 50)

crystal cell and that calculated for the dimethylammonium group should increase, but this effect is weak because the classical
[(CHg)2NH*] which is 31.7 G. As follows from Figure 5, even  motion frequency (1} starts to be comparable to the line
at the lowest temperatures the second moment value is aboutvidth expressed on the frequency scale. The molecular fre-
twice smaller. According to the theory presented in Section 2, quency (11‘?")) keeps the second moment at a reduced value up
the second moment of the central proton NMR line for the to about 74 K, wher€,Tung) = E{}. The subsequent reduction
particular case of the DMACA molecule is given by eq 24.  of the o, line occurs when the rate of the classical motions (1/
timc;r; t?f(gbg S:\jlI(—)IfzghZ;e(jmﬁ?;tgre,\fﬁgfnxgng'sfe?;ﬁz‘zée'S]X:t'onrﬁy) becomes comparable with. The dashed line in Figure 5
. - ) shows the temperature dependencéviefdue to the classical

parameters of the methyl groups motions, Table 2, which could 1tion of two dynamically inequivalent methyl groups with the

alsp be obtaineql from the NMR sepond moment measurementstunne"ng motion neglected.
Using the best-fit parameters obtained frag(T) (Table 2), eq The experimental data in Figure 5 show that above 150 K
24, and the structural datd,we calculated the theoretical are are further reductions of the second moment. These

dependencéy(T), see the solid line in Figure 5. The first wo o4y ,ctions can be related to additional classical motions of the
reductions (because of two dynamically inequivalent tunneling ,iecule. It can be the rotation of three DMA cations around
CHs groups) of the second moment occur near 0 K. These two their symmetry axis or quasi-isotropic motion of molecules in
reductions change the value bf; from 31.7 G to 14.1 G. temperatures lower than that of the phase transifler=(242
Then this value is kept up to about 42 K. At this temperature y T4 analyze the activation parameters of this motion we need
the tunneling motion of the labeled Il methyl group ceases (g ann)y a formula for the spectral density of the complex motion
(CoTunay = Egp). Above 42 K, the second moment value  of the vectorRs, including the two classical rotatiod&40:4243

The analysis of the other types of motion in DMACA at the
range of the high temperatures regime has been made in refs
35 and 36.
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5. Conclusions

N
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Proton spir-lattice relaxationT; and the proton second
moment of the NMR line for [(ChH)2NH2]3SkClg (DMACA)
are affected by the classic@ rotation as well as incoherent
tunneling of two dynamically different methyl groups belonging
to the [(CH)2NH,™] cation.
1. The course of the protofry(T) (55.2 MHz) dependence is
: , : mainly affected by the contribution afiag.
100 150 200 250 2. The classical motion characterized by the correlation time
1000/T (K™) T?r\; dominates at the highest temperatures, and the tunneling
Figure 4. Proton correlation timesg) andry (circles) andz{), and motion characterized byj;) dominates at the lowest tempera-
rh“l) (squares) as a function of 1000)K ~%]. Points and lines refer to tures.
the experimental and theoretical correlation times, respectively. The 3. The specific character g in the range of intermediate
motion parameters used in the calculations are taken from Table 2.temperatures (20 ® < 1000m < 60 K1) refers to the
Arrows show the temperaturdng) (74 and 42 K). significant shortening of the correlation timg) below the
w r r r temperaturelung) where the tunneling motion ceases.
=M, = 31.7 G? 4. The motion parameters obtained from fheexperiment,
used for the calculation of the protdvi, temperature depen-
25 J dence, explain well the narrowing of the NMR line at liquid
helium temperatures. This narrowing is caused by the tunneling
20+ 1 motion. Then the narrow line starts to be broadened in
o | temperature regimes after cessation of the tunneling motion and
154 0 Q000 b . . . .
%0000 before the narrowing caused by the classical motion. This should
104 00, T _ happen twice in the temperature scale for the reason of two
° dynamically inequivalent methyl groups.
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