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This paper reports the temperature dependence of the relaxation timeT1 (55.2 and 90 MHz) and the second
moment of the NMR line for protons in a polycrystalline sample of [NH2(CH3)2]3Sb2Cl9 (DMACA). The
fundamental aspects of molecular dynamics from quantum tunneling at low temperatures to thermally activated
reorientation at elevated temperatures have been studied. The experimentally observed spin-lattice relaxation
rate is a consequence of dipolar interactions between the spin pairs inside the methyl group (1/T1AE contribution)
as well as the spins belonging to neighboring methyl groups and pairs, methyl spin-outer methyl spin (1/
T1EE contribution). These contributions are considered separately. Two methyl groups in the dimethylammonium
(DMA) cations are dynamically inequivalent. The values of the tunnel splitting of separate methyl groups are
obtained from theT1 (55.2 MHz) experiment. The tunneling dynamics taking place below the characteristic
temperatures 74 and 42 K for separate methyl groups are discussed in terms of the Schro¨dinger equation.
These temperatures point to the one at which thermal energyCpT and potential barrier take the same value.
It is established that the second moment of the proton NMR line below 74 K up to liquid helium temperature
is much lower than the rigid lattice value, which is due to a tunneling stochastic process of the methyl groups.

1. Introduction

The methyl group is the ideal system for studying the
fundamental aspects of molecular motion in solids because it
undergoes rotational tunneling as well as thermally activated
reorientation. The experimentally obtained temperature depend-
encies of the spin-lattice relaxation time,T1, and the second
moment of the NMR line,M2, for methyl bearing solids are
considerably different from those recorded for other solids.

The first to investigate the mechanism of CH3 group
reorientation in solids by NMR were Gutowsky and Pake,1

Andrew,2 and Powles and Gutowsky.3,4 Later,5,6 the mechanism
of the CH3 group rotational tunneling was considered in some
detail. For a number of methyl-bearing solids the relaxation time
T1 at the minimum, observed even at high temperatures, is longer
than that predicted on the basis of the known theories relating
the T1 relaxation with the classicalC3 rotation of the methyl
group.6-12 This property is due to large tunnel splitting of the
spin levels in a magnetic field for the methyl group protons.
The tunnel splittingωT is imposed by the symmetry of the
methyl group.13
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The alternative theory explaining the longT1 at the minimum
has been proposed in ref 14. The theory demonstrates that the
torsional oscillations of methyl groups, occurring at frequencies
too high to influence spin relaxation rates directly, partially
average the Hamiltonian for the magnetic dipole-dipole
interactions between the nuclei. The efficiency of nuclear
relaxation resulting from hindered rotation is thus reduced. The
two maximums of relaxation rates both being inversely pro-
portional to the Larmor frequency have been explained for the
methyl group attached to a benzene ring in the stochastic model
proposed in refs 15 and 16.

In terms of the relaxation theory assuming the classical motion
only it is impossible to correlate the second moment (M2) results
with the results of the relaxation timeT1 measurements. The
temperature dependence of the second moment may not show
any changes even when considering the range from the liquid
helium temperature, and its value can be a few times lower than
that calculated for the rigid structure. Andrew et al.17 found that
even at liquid helium temperatures the second moment of the
NMR line of trimethylbenzene did not reach the value predicted
for the rigid molecule. Eades et al.18,19 reported that NMR
spectra of a number of compounds containing methyl groups
measured at liquid helium temperatures are often narrow,
indicating rotational motion of the methyl groups. Allen20 gave
the first simple model to explain the reduced value of the proton
second moment of the NMR line (M2) in methyl-bearing
compounds at low temperatures. The spectral densities of
complex motion derived in the ref 21 have been used in this
work to explain the second moment of the proton NMR line
much being lower than the rigid lattice value in the material
studied.

The spin level system of methyl protons significantly different
from that predicted for two uncoupled spins.22 In the system of
three spins belonging to the methyl group, the transitions
between the levels corresponding to the resonance frequencies
ωI and 2ωI are forbidden.13 As the theory of relaxation has been
propounded for a two-spin system, the occurrence of the tunnel
splitting of the methyl group demands differentiation of two
relaxation channels. The relaxation in the system of spin pairs
Ris(intra) (dotted lines in Figure 1) belonging to the methyl
group, the so-called (1/T1AE) relaxation, is driven by the
transitions between the nuclear spin levels corresponding to the
frequencies (ωT ( ωI), (ωT ( 2ωI) and the relaxation in the
systems of the other spin pairs in the molecule distanced by
Ris(inter) (dashed lines in Figure 1), the so-called (1/T1EE)
relaxation, is driven by the transitions corresponding to the

frequenciesωI and 2ωI. Such an approach to the spin-lattice
relaxation of the methyl bearing solid has been proposed by
Haupt.13

The methyl group undergoes hindered rotation in a triple
potential well (Figure 2). This motion is complex, consisting
of hopping over the barrier (hopping across the barrier, classical
motion, classicalC3 rotation) and hopping through the barrier
(incoherent tunneling, quantum mechanical tunneling). Because
of these compound motions the orientation and the values of
Ris(intra) andRis(inter) vectors are random functions of time.
The theory of classicalC3 rotation of the methyl group, which
is a dominant mechanism of relaxation at high temperatures, is
well-known.23 This paper reports the occurrence of the tunneling
jumps of the methyl protons in the (CH3)2NH2

+ (DMA) cation
as the dominant mechanism of spin-lattice relaxation in the
low-temperature regime. Moreover, in this paper it is shown
that although the tunnel splittingωT takes place also at high
temperatures, the spectral densities related to the tunneling jumps
are zero at high temperatures. The presence of the tunneling
process is predicted by the Schro¨dinger equation for the energies
of particles lower than the potential barrier. The tunneling jumps
of proton through the barrier should cease above the temperature
at which the thermal energy of the molecule is higher than the
potential barrier for the hindered rotation of the methyl group.
The damping of the correlation function related to the incoherent
tunneling at high temperatures has been established for the
proton transfer in the hydrogen bond.24,25

The conclusions drawn on the basis of the spectral densities
of particular motions calculated in refs 24-26 contradict the
generally assumed scheme implying that the classical motion
takes place only at high temperatures.7 The probability of
classical jumps is higher than zero in the whole temperature
regime up to 0 K, while that of tunneling jumps is higher than
zero only at low temperatures.

DMACA in the paraelectric phase crystallizes in a monoclinic
symmetry, space groupP21/c (a ) 14.074(2) Å,b ) 9.048(2)
Å, c ) 9.692(3) Å,â ) 95.56(2)°, Z ) 2). The crystals are
built of two-dimensional layers of corner sharing halogen
octahedra.27 The dimethylammonium (DMA) cations situated
in cavities between the octahedra possesse substantial freedom
for reorientations. The ionic salts containing the DMA cations
are known to undergo structural phase transitions. The phase
transition at 242 K leads to the ferroelectric phase with a polar
symmetrym (space groupPc).27 From the dielectric studies of
DMACA it appears that the ferroelectric phase transition is of
the order-disorder type. The mechanism of this phase transition
is associated with changes in the dynamics of the DMA

Figure 1. The structure of the (CH3)2NH2
+ (DMA) cation. The

distancesRis(intra) and exemplaryRis(inter) are marked with dotted
and dashed lines, respectively.

Figure 2. Schematic representation of motion in a periodic triple
potential well. The symbols (1/τov) and (1/τtu) are the rate constants of
classical jumps across the barrier and tunneling jumps through the
barrier. The two lowest torsional energy levels v0 and v1, distanced
by E01, exhibit a tunnel splittinghωT into the levels with the symmetry
A andE.
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cations.28-33 The high-temperature dynamics of the alkylam-
monium cation has been studied, both below and above the
transition by NMR spectroscopy.34-36 This paper presents proton
NMR studies of DMA cation dynamics below the liquid nitrogen
temperature.

2. Theory

Proton Spin-Lattice Relaxation. The theory of magnetic
nuclear relaxation for methyl bearing solids must distinguish
between the spin pairs belonging to the same methyl group,
Ris(intra), and spin pairs made of one spin belonging to the
methyl group considered while the other is outside it (it can
belong to another molecular group),Ris(inter) (Figure 1). This
distinction is necessary because the splittingωT of the torsional
ground state of the methyl group is usually superimposed on
the three spin level splittingωI in a magnetic field (Figure 2),
while the theory of relaxation concerns two-spin systems. For
the spin pair at the distanceRis(inter), the spin-lattice relaxation
can be realized through transitions forced by a fluctuating local
field of the frequenciesωI and 2ωI, which are forbidden for
the spin pairs at the distanceRis(intra). For the latter spin pairs
the allowed transitions are (ωT ( ωI) and (ωT ( 2ωI). Hence,
the total relaxation rate of the eight protons in the DMA cation
with two methyl groups (I) and (II), denoted as in Figure 1, is
a sum of two relaxation rates:

where

The indices (I) and (II) mean that the motion parameters refer
to the methyl group (I) or (II). The symbol (1/T1AE

is ) refers to
the spin-lattice relaxation of two nuclear spins at the distance
Ris(intra), while (1/T1EE

is ) refers to the relaxation in the system
of two spins at the distanceRis(inter). The indices vx, wherex
) 0, 1, 2, ..., were introduced to take into account the fact that
the molecules can be distributed on the torsion levels according
to the Boltzmann distribution. The problem is discussed in detail
in the paper26 showing that for proton relaxation it is enough to
consider the two ground and first excited torsional levels.
Therefore, the total relaxation rate is

wherenv0 andnv1 are the fractions of molecules on the vx )
v0 and vx ) v0 levels.

Particular contributions to the total relaxation rate (1/T1) are
functions of spectral densities depending on the model of
motion. According to the model presented in ref 26, the spectral
densities depend on the two different correlation times: (1) the
correlation time of jumps over the barrier (classical motion),
which fulfils the Arrhenius dependence,

whereE(r)
ov is the molar potential barrier height andr ) I, II

labels the methyl group, and (2) the correlation time of tunnel
jumps expressed by the equation which follows from the
Schrödinger equation,37

where

The value ofB in eq 7 depends on the mass “m” of the
tunneling particle and on the width of the potential barrier “L” .
CpT, whereCp is the molar specific heat,T is the temperature
in the Kelvin scale, is the thermal energy andE(r)

ov is the
potential energy barrier of the Avogadro number of particles.

Therefore, as the BPP theory predicted38

and according to the Haupt theory13

where the spectral densities

are Fourier transforms of the autocorrelation functions of the
random functions of the dipolar perturbation Hamiltonian. These
random functions are

Since spins (i) and (s) belong to the molecule undergoing
stochastic motions, the coordinates (Ris, υis, æis) are random
functions of time.Ris is the distance between spins (i) and (s).
υis and æis are the polar and azimuth angles, respectively,
describing the orientation of the internuclear vector in the
laboratory frame with thez axis in the direction of the external
magnetic fieldB0. dc

is(t) ) γi γspRis
-3(t) is the dipolar coupling

constant. As in the polycrystalline material particular spin pairs
can assume arbitrary anglesυis and æis, the calculations of
Jis

m(ω) were performed for the mean values [sinυis cosυis exp-
(iæis)]2 ) 2/15 (S1 ) 2/15) and [sin2υis exp(2iæis)]2 ) 8/15 (S2

) 8/15). Therefore, after spatial averaging the total spectral
density of complex motion consisting of the classical motion
and incoherent tunneling has been derived in ref 26:
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Sm ) 2/15, 8/15 form ) 1, 2 and

wheredc
is(A) ) γiγspRis

-3(A), dc
is(B) ) γiγspRis

-3(B), dc
is(C) )

γiγspRis
-3(C) are the particular dipolar coupling constant values.

Ris(A), Ris(B), andRis(C) are the distances between the spins
“i” and “s” at three equilibrium positions in a triple potential
minimum during the hindered rotationC3 of a given methyl
group. If the spins “i” and “s” belong to the same methyl groups,
the distance between them does not change, soRis(A) ) Ris(B)
) Ris(C), but if they belong to different methyl groups, or spin
“i” belongs to the rotating methyl group and spin “s” to another
chemically inequivalent group thenRis(A) * Ris(B) * Ris(C).
The anglesΘAB

is , ΘAC
is , ΘBC

is are those made byRis(A), Ris(B),
Ris(C) (Figure 1).

The condition ifCpT > E(r)
ov then

confirms, following from the Scho¨dinger equation, the cessation
of the tunneling motion (τ(r)

tu f ∞) at the characteristic
temperatureTtun at whichCpTtun ) E(r)

ov. The spectral densities
are governed by the classical motion only at temperaturesT >
Ttun. Below temperatureTtun the probability of tunneling
stochastic process becomes higher than zero (eq 6).

The classical motion also can be complex (for example,
consisting of hindered rotation in triple potential and isotropic
rotation). Then the nextT1 minima at higher temperatures are
expected.39,40

Second Moment of the Proton NMR Line. The basic
equation for the dipolar second moment,M2, of a dipolar NMR
line was derived by Van Vleck41 for two identical nuclei in the

presence of a motion for whichτc , 1/(γxM2is
rigid), whereM2is

rigid

is the rigid lattice second moment in magnetic field units,

where

is a random function in the dipolar perturbation Hamiltonian.
WhenN is the number of interacting nuclei thenM2is

motion is
given by the averaged sum of theN dipolar interactions:

The maximum reduction in the second moment occurs at
temperatures at which all the molecules reorient fast enough to
reduce the line broadening. As proposed by Powles and
Gutowsky,4 the stochastic nature of the motion permits the
application of the correlation function method. If the correlation
function of a given reorientation is known, the appropriate
averages for the partial averaging of〈[Fis

0(t)]2〉 are of the form

whereδν is the line width,ω ) 2πν ) γxM2, andJis
0(ω) is the

spectral density of the correlation function of the random
function Fis

0(t).
Therefore, as proposed by Powles and Gutowsky the equation

for M2 extended over the whole temperature regime is of the
form

The fractionsnV0 andnV1 molecules distributed in two vibrational
levels contribute to the second moment of the NMR line.
Therefore, the total value of the second moment equals

wherenV0 andnV1 are the fractions of molecules at the ground
and excited rotational levels. As we are going to consider the
second moment reductions taking place at temperatures below
the liquid nitrogen one, in eq 23 the contribution ofnv1(M2)v1

can be neglected becausenv0 ≈ 1 in this range. Thus,M2 ≈
(M2)v0.

Calculations of proton spin-lattice relaxation time as well
as the proton second moment of the NMR line require the
knowledge of the spectral densities of the expected motion of
the spin system.

The three proton NMR lines at the frequenciesωI, (ωI + ωT),
and (ωI - ωT) are observed at liquid helium temperatures for
methyl bearing compounds.7 The lines (ωI ( ωT) are distanced
from the central lineωI and usually are beyond the range of
the central line measurement. The temperature dependencies of
the second moment have to be considered separately for each
line. Assuming that the dipolar interactions are additive, the
total second moment of the line should include a sum of dipolar
interactions over all spin pairs at the distancesRis(inter) as well
asRis(intra).

The total value of the second moment should include the
dipole-dipole interactions of all spin pairs in the molecule. The
contribution from two spins belonging to the NH2 remains
constant because no motion modulates the dipolar interaction
of the protons within the NH2 group. The other dipole-dipole
interactions in the molecule are modulated by the motion of
two methyl groups. Therefore, the total value of the second
moment equals
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where

whereC1
is, C2

is are given in eqs 14 and 15, andτ(r)
ov, τ(r)

tuv, τ(r)
ovtu are

given in eqs 5, 6, and 16.
The reductions of the second moment should be observed

when the rates of particular motions (1/τ(r)
tu ), (1/τ(r)

ov) become
comparable to the values of line widths on the frequency scale.
The tunneling jumps in separate methyl groups reduceM2. This
should happen at the temperatures at which the reorientation

frequency meets the condition (1/τ(r)
tu) ≈ γxM2(r)

is . Such a
temperature regime is near 0 K. With temperature increasing,
when the tunneling motion ceases the line should undergo
broadening followed by narrowing at higher temperatures due
to increasing classical motion. The two reductions which are
due to classical dynamics of separate methyl groups are expected
for proton M2 of DMACA. The reductions should take place

when (1/τ(r)
ov) ≈ γxM2(r)

is . The classical motion ofRis can be
complex (for example, the classical hindered rotation in a triple
potential and isotropic rotation). Then the next reductions of
M2 are expected at higher temperatures. The corresponding
equations for the temperature dependences of spectral density
of complex motion derived in refs 39, 40, 42, and 43 may be
applied to such a case.

3. Experimental Section

[(CH3)2NH2]3Sb2Cl (DMACA) were precipitated from the
stoichiometric aqueous solution of Sb2O3 and [NH2(CH3)2]Cl
at a high excess of HCl and purified by slow recrystallization.
The pulverized single crystals of DMACA were degassed under
a pressure of 10-5 Torr and sealed under vacuum in glass
ampules.

The proton spin-lattice relaxation (T1) measurements at a
Larmor frequency 55.2 and 90 MHz and second moment
experiments were carried out with a SXP 4/100 Bruker pulsed
NMR spectrometer. ProtonT1 relaxation times were measured
employing the (180°-τ-90°) pulse (IR) sequence for times
shorter than 1 s and by the conventional saturation-recovery
(SR) sequence [(90°-τ1-90°)n-τ-90°] wheren ) 15. Delay
τ1 was typically 4 ms. For all data reported, the magnetization
was found to recover exponentially. The second moment of the
1H NMR line was calculated from a solid echo signal. Solid
echo sequence44 (90x

o-τ-90y
o) (with τ ) 17 µs) avoids signal

loss during the dead time.45,46The normalized line shape of the
solid echo spectrum is identical with that of the FID spectrum.
Therefore the second moment can be determined on the basis
of analysis of the solid echo shape.46 The temperature of the
sample was automatically controlled by means of a gas-flow
CF1200 Oxford cryostat with an accuracy of about 1 K during
each measurement.

4. Results and Discussion

Proton Spin-Lattice Relaxation Time. The spin-lattice
relaxation times for the protons of [(CH3)2NH2]3Sb2Cl9 (DMACA)
were measured at the frequency 55.2 MHz from the liquid
helium temperature to the melting point, and at the frequency
90 MHz from the liquid nitrogen temperature up to the melting

point. The value ofT1 due to classical motion depends on the
resonance frequencyωI according to the known relation:

whereC is the relaxation constant depending on the model of
motion.

Assuming that the methyl groups perform the correlatedC3

reorientation about the symmetry axis, the relaxation constant
C becomes23

wheren ) 6 is the number of protons in the methyl groups and
N ) 8 is the number of all protons in the molecule.RCH3 )
1.78 Å is the proton-proton distance in the methyl group.
According to eq 27 we getC ) 60.4 × 108 s-2 andT1

min(90
MHz) ) 66 ms andT1

min(55.2 MHz)) 40 ms. The experimental
T1 times at the minima are about twice longer.

The character of the wide range temperature dependence of
T1 (Figure 3a) indicates that it cannot be interpreted in terms of
the classical theory of molecular motion only. It seems that the
only reasonable explanation of this course ofT1(T) is based on
the assumption of the complex motion of separate methyl
groups. The complex motion consists of jumps over the barrier
characterized by correlation timeτ(r)

oV and tunneling jumps
characterized by the correlation timeτ(r)

tu . The geometries of
both compound motions are the same but the frequencies are
different.

M2(r)
is ) 9

20γ2
dc
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tan-1(γiτ(r)
ovxM2(r)

is ) +

C1
isC2

is2
π

tan-1(γiτ(r)
tu xM2(r)

is ) + (C2
is)22

π
tan-1(γiτ(r)

ovtuxM2(r)
is )]

(25)

Figure 3. Temperature dependencies of the proton T1 time (55.2 MHz,
circles; 90 MHz, squares) and best fit curves (solid lines) for powdered
samples of DMACA. The dotted lines in part b show the theoretical
plots of T1EE(52.2 MHz) andT1EE(90 MHz) obtained from eq 3 and
the motion parameters given in Table 2. Arrows show the temperatures
Ttun(r) ) E(r)

ov/Cp (74K and 42 K).

T1
min )

ωI

1.425C
(26)

C ) n
N

9
20

γ4p2RCH3
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The high-temperatureT1 minimum is asymmetric, which
suggests the presence of two minima close on the temperature
scale. The slope of lnT1(1000/T) dependence (Figure 3b) from
the high-temperature side corresponds to the activation energy
of 9.6 kJ/mol, while from the low-temperature side to 5.4 kJ/
mol. The activation energies of this order characterize the
classical motion. These values can be interpreted as correspond-
ing to different potential barriers of the jumps over the barrier
of two types of methyl groups. These dynamically inequivalent
methyl groups can belong to one DMA cation or to two different
cations belonging to two different molecules in the crystal cell.
The distinction between both cases is rather impossible by the
NMR relaxation method.

The significantly different potential barriers for the hindered
rotation of separate methyl groups suggest that the respective
tunnel splittingωT are different. This is also confirmed by fact
that two minima close on the temperature scale do not take the
same values. The analysis presented is performed assumingnv0

) 1 andnv1 ) 0, which is correct for low temperatures and
holds also for high temperatures, because the only difference
between eq 4 and the following equation

is the neglect of the fact that the value of the potential barrier
is (E(r)

ov - E01) (Figure 2) for the fractionnv1 of the molecules.
Thus, the potential barrier of the classical motion obtained from
eq 28 is the average value of the potential barrier for molecules
distributed between the v0 and v1 levels.

In the range of intermediate temperatures, the increase inT1

at a rate of 5.4 kJ/mol breaks and the lnT1(1000/T) dependence
passes through two weakly marked minima of almost the same
height, but theT1 at these minima are a few times longer than
at the high-temperature minimum. The intermediate temperature
range covers 20 K-1 < 1000/T < 60 K-1. In the lowest
temperatures the lnT1(1000/T) dependence becomes flattened
and linear down to liquid helium temperature (Figure 3a). The
character of the intermediate and low temperatureT1 dependence
follows from the characteristic temperature dependence ofτ(r)

tu .
The values ofτ(r)

tu , which are almost constant at low tempera-
tures, decrease significantly at the temperature regime below
the Ttun(r) temperature at which the tunneling motion ceases.

The results of the fit of eq 1 and eq 13 to the experimental
relaxation timesT1(55.2 MHz) andT1(90 MHz) are presented
in Figure 3 by solid lines. The analysis of the temperature
dependence ofT1 at high temperature range is additionally
illustrated in Figure 3b showing, apart from the best-fitted curve,
also the contribution ofT1EE to theT1 relaxation time. The values
of Ris(A), Ris(B), Ris(C), Θis

AB, Θis
BC, and Θis

AC were not fitted
but were taken from the available structural data.30 The
relaxation rate (1/T1EE) depends on the fluctuations of the dipolar
interactions of the spin pairs at the distancesRis(inter) (Figure
1). Because in the formulas for (1/T1EE), the value ofRis occurs
in the sixth power, the ensuing considerable changes in the
distance cannot be neglected in analysis of the relaxation rate.
According to Table 1, allRis(inter) distances are from the range
2.2 to 2.9 Å. The values listed in Table 1 are calculated from
the structural data.30 The distances are much greater thanRis

within the methyl groupRis(intra) ) 1.78 Å. The (1/T1EE)
contribution to the relaxation is much smaller than (1/T1AE).
Thus it can be concluded that the course ofT1(T) in the whole
temperature range is related to (1/T1AE).

The best-fit parameters are given in Table 2. The values of
the parameters influence theT1 value in different temperature

ranges. The values ofτ0(r)
ov , E(r)

ov, andωT(r) were obtained from
the asymmetric high-temperature minimum, andτ0(r)

tu and L
were obtained from the low-temperature regime. The values of
Cp andTtun were estimated from the intermediate temperature
regime (20 K-1 < 1000/T < 60 K-1).

In conclusion, the course ofT1(T) for DMACA reveals the
presence of two dynamically inequivalent methyl groups with
two different tunnel splittings. One of the tunnel splittings is
small and cannot be precisely determined fromT1 experiment.26

The other oneωT is high enough (2π × 600 MHz) to be
manifested as a significant increase in the corresponding value
of T1 minimum. The dominant mechanism of relaxation at the
lowest temperatures is the tunneling because at this temperature
range the spectral density of this type of motion takes the highest
value.

Figure 4 presents the temperature dependence of the correla-
tion times characterizing particular types of stochastic motion
performed by the two methyl groups of the DMA cation denoted
as (I) and (II). These motions are the classical hindered rotations
(the linesτ(I)

ov, τ(II)
ov ), tunneling jumps (the linesτ(I)

tu , τ(II)
tu ). The

lines were drawn using the best-fit parameters given in Table
2, and eqs 5 and 6. The points are the experimental correlation
times.

Usually literature reports one uniform correlation time
characterizing all stochastic processes in the molecule.7,11,47Such
a uniform correlation time does not follow the Arrhenius
equation and diverts from it at the low-temperature range. The
dependencies presented in Figure 4 differ from the temperature
course of one uniform correlation time (Arrhenius diagram)
known from the literature. We do not accept the idea of a
uniform correlation time. The temperature dependencies of the
τ(I)

ov, τ(II)
ov times fulfill the Arrhenius equation in the whole

temperature regime studied. The temperature dependencies of
the τ(I)

tu , τ(II)
tu can be plotted up to a certain characteristic

temperatureTtun, whereCpTtun ) E(r)
ov only. Above this temper-

ature the correlation functions of incoherent cannot be defined.
Before the molecules reach the thermal energyCpTtun, the
correlation timesτ(I)

tu , τ(II)
tu should undergo significant shorten-

ing.
Proton NMR Line Narrowing. The temperature dependence

of the second moment of the proton NMR line for DMACA is
shown in Figure 5. Even at the lowest temperatures the second
moment does not reach the value determined for the rigid lattice.
Usually, the second moment for the rigid lattice is calculated
by assuming the Van Vleck theory,41 so by summing up the
contributions from all dipolar interactions in the molecule,
according to the formula

wheren is the number of all protons in the unit cell of the
crystal.

For the rigid structure of [(CH3)2NH2]3Sb2Cl9 (DMACA) it
is 31.9 G2. It is very interesting to note a very small difference
between the rigid lattice second moment calculated for the

1
T1

) ( 1
T1

)
v0

(28)

TABLE 1: The Proton -Proton Distances (in Å) for the
DMA Cation (Figure 1)

RH(4)H(1)) 2.19 RH(5)H(1)) 2.19 RH(1)H(6)) 4.08 RH(3)H(6)) 3.68
RH(4)H(2)) 2.82 RH(5)H(2)) 2.23 RH(1)H(7)) 3.75 RH(3)H(7)) 2.60
RH(4)H(3)) 2.23 RH(5)H(3)) 2.82 RH(1)H(8)) 3.74 RH(3)H(8)) 3.15
RH(4)H(6)) 2.36 RH(5)H(6)) 2.36 RH(2)H(6)) 3.68 RH(4)H(5)) 1.67
RH(4)H(7)) 2.40 RH(5)H(7)) 2.96 RH(2)H(7)) 3.15 RH(1)H(2)) 1.78
RH(4)H(8)) 2.95 RH(5)H(8)) 2.40 RH(2)H(8)) 2.60 RH(6)H(7)) 1.78

M2
rig )

9

20
γi

2p21
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∑
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crystal cell and that calculated for the dimethylammonium group
[(CH3)2NH2

+] which is 31.7 G2. As follows from Figure 5, even
at the lowest temperatures the second moment value is about
twice smaller. According to the theory presented in Section 2,
the second moment of the centralωI proton NMR line for the
particular case of the DMACA molecule is given by eq 24.

On the basis of the temperature dependencies of the relaxation
times T1(90 MHz) and T1(55.2 MHz) we determined the
parameters of the methyl groups motions, Table 2, which could
also be obtained from the NMR second moment measurements.
Using the best-fit parameters obtained fromT1(T) (Table 2), eq
24, and the structural data,30 we calculated the theoretical
dependenceM2(T), see the solid line in Figure 5. The first two
reductions (because of two dynamically inequivalent tunneling
CH3 groups) of the second moment occur near 0 K. These two
reductions change the value ofM2 from 31.7 G2 to 14.1 G2.
Then this value is kept up to about 42 K. At this temperature
the tunneling motion of the labeled II methyl group ceases
(CpTtun(II) ) E(II)

ov ). Above 42 K, the second moment value

should increase, but this effect is weak because the classical
motion frequency (1/τ(II)

ov ) starts to be comparable to the line
width expressed on the frequency scale. The molecular fre-
quency (1/τ(I)

tu ) keeps the second moment at a reduced value up
to about 74 K, whereCpTtun(I) ) E(I)

ov. The subsequent reduction
of theωI line occurs when the rate of the classical motions (1/
τ(I)

ov) becomes comparable withδν. The dashed line in Figure 5
shows the temperature dependence ofM2 due to the classical
motion of two dynamically inequivalent methyl groups with the
tunneling motion neglected.

The experimental data in Figure 5 show that above 150 K
there are further reductions of the second moment. These
reductions can be related to additional classical motions of the
molecule. It can be theC3 rotation of three DMA cations around
their symmetry axis or quasi-isotropic motion of molecules in
temperatures lower than that of the phase transition (Tc ) 242
K). To analyze the activation parameters of this motion we need
to apply a formula for the spectral density of the complex motion
of the vectorRis, including the two classical rotations.39,40,42,43

The analysis of the other types of motion in DMACA at the
range of the high temperatures regime has been made in refs
35 and 36.

5. Conclusions

Proton spin-lattice relaxationT1 and the proton second
moment of the NMR line for [(CH3)2NH2]3Sb2Cl9 (DMACA)
are affected by the classicalC3 rotation as well as incoherent
tunneling of two dynamically different methyl groups belonging
to the [(CH3)2NH2

+] cation.
1. The course of the protonT1(T) (55.2 MHz) dependence is

mainly affected by the contribution ofT1AE.

2. The classical motion characterized by the correlation time
τ(r)

ov dominates at the highest temperatures, and the tunneling
motion characterized byτ(r)

tu dominates at the lowest tempera-
tures.

3. The specific character ofT1AE in the range of intermediate
temperatures (20 K-1 < 1000/T < 60 K-1) refers to the
significant shortening of the correlation timeτ(r)

tu below the
temperatureTtun(r) where the tunneling motion ceases.

4. The motion parameters obtained from theT1 experiment,
used for the calculation of the protonM2 temperature depen-
dence, explain well the narrowing of the NMR line at liquid
helium temperatures. This narrowing is caused by the tunneling
motion. Then the narrow line starts to be broadened in
temperature regimes after cessation of the tunneling motion and
before the narrowing caused by the classical motion. This should
happen twice in the temperature scale for the reason of two
dynamically inequivalent methyl groups.
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